- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Emproto, C (1)
-
Godfrey, L (1)
-
Mathur, R (1)
-
Simon, AC (1)
-
Sun, M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Titanium (Ti) typically exhibits low mobility in geologic fluids due to the low aqueous solubility of common (Fe-)Ti oxide minerals. Consequently, Ti isotope variations (δ49/47Ti, given as δ49Ti) in geologic systems are primarily attributed to magmatic differentiation. Thus, the potential for fluid-mineral fractionation has received less attention. However, ligand-rich fluids are capable of mobilizing Ti as observed in natural systems and laboratory studies. As hydrothermal ore mineralization is commonly associated with ligand-rich brines capable of transporting significant quantities of metals, Ti isotopes may aid in understanding mineralization and alteration in complex hydrothermal systems. Here we present data from computational modeling of various Ti coordination complexes theorized to exist in geologic systems and/or under relevant experimental conditions as well as computed fractionation factors for various Ti-bearing crystalline phases to investigate the basic mechanics of equilibrium fluid-mineral Ti isotope fractionation. These results indicate that equilibrium fluid-mineral Ti isotope exchange between our modeled Ti complexes and phases with 6-coordinated Ti is predicted to generally lead to enrichment of heavy Ti isotopes in the fluid. Because minerals with 6-coordinated Ti (such as magnetite and ilmenite) are the most important reservoirs of Ti in the solid Earth, Ti isotope equilibration between terrestrial rocks and fluids can be generalized to enrich the fluid in heavy Ti isotopes. We also performed magnetite-ülvospinel leaching experiments to investigate fluid-mineral Ti isotope fractionation in this phase. Mineral leaching experiments varying acid strength, leaching temperature, and reaction time with HCl and HF qualitatively support the prediction that the fluid phase will become enriched in heavy Ti isotopes during fluid-mineral interactions that approach equilibrium with Ti-rich magnetite. Additionally, the leaching data also suggest that the fluid becomes slightly enriched in lighter Ti isotopes when Ti exchange is limited—potentially due to kinetic effects. Therefore, magnetite from natural systems may be depleted in heavy Ti isotopes during regenerative mineral replacement involving equilibration with fluids or may possibly become depleted in light Ti isotopes under a kinetic fractionation regime—leading to mineral δ49Ti values that are insufficiently explained by magmatic differentiation or inter-mineral fractionation. These results are a first look at fluid-mineral interactions that may affect Ti isotope fractionation in hydrothermal mineral systems, and Ti isotopes should be further studied as a potential method of understanding aqueous metal transport and tracing alteration in mineral deposits.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
